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Abstract: Multi-angle remote sensing images are acquired over the same imaging scene 

from different angles, and share similar but not identical information. It is therefore 

possible to enhance the spatial resolution of the multi-angle remote sensing images by  

the super-resolution reconstruction technique. However, different sensor shooting angles 

lead to different resolutions for each angle image, which affects the effectiveness of the  

super-resolution reconstruction of the multi-angle images. In view of this, we propose 

utilizing adaptive weighted super-resolution reconstruction to alleviate the limitations of 

the different resolutions. This paper employs two adaptive weighting themes. The first 

approach uses the angle between the imaging angle of the current image and that of the 

nadir image. The second is closely related to the residual error of each low-resolution angle 

image. The experimental results confirm the feasibility of the proposed method and 

demonstrate the effectiveness of the proposed adaptive weighted super-resolution approach. 

Keywords: multi-angle remote sensing; super-resolution; resolution differences;  

total variation 
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1. Introduction 

High-resolution remote sensing satellite imagery provides rich, detailed information and allows 

high-definition visual interpretation. High-resolution images can therefore support improved 

information extraction capabilities at a fine scale. Nowadays, high-resolution (HR) images are widely 

used for land surveys, urban studies, forest measurement, hazard assessment, military target 

identification, and so on. In order to improve the spatial resolution of the observed images, the traditional 

method is to decrease the physical sizes of the charge-coupled device (CCD) or complementary metal 

oxide semiconductor (CMOS) sensors through advanced sensor fabrication techniques, which is 

referred to as the hardware approach. However, this generates shot noise that severely degrades the 

image quality. There is therefore a technical limitation with regard to pixel size reduction [1,2]. In 

addition, the economic cost of manufacturing such high-precision equipment is very high. Thus, it is 

necessary to develop post-processing software techniques to improve the spatial resolution of remote 

sensing images, and the super-resolution reconstruction (SRR) technique has become widely 

acknowledged as an efficient approach for remote sensing image resolution enhancement. 

Image super-resolution reconstruction refers to a signal processing technique which produces  

a high-resolution image from a sequence of observed low-resolution (LR) images that are noisy, 

blurred, and downsampled [3,4]. The idea of SRR was first proposed in 1984 by Tsai and Huang [5]  

to improve the spatial resolution of Landsat TM images, using multiple under-sampled images with  

sub-pixel displacements in the frequency domain. Since then, the super-resolution reconstruction 

technique has developed greatly, and there have been various classical reconstruction frameworks 

proposed, such as the maximum a posteriori (MAP) [6], projection onto convex sets (POCS) [7],  

non-uniform interpolation [8], maximum likelihood [9,10], the iterative back-projection approach 

(IBP) [11], mixed maximum a posteriori/projection onto convex sets (MAP/POCS) [12], and so on. 

Generally speaking, the SRR methods in the frequency domain have a fast processing speed, but it is 

usually difficult to integrate the prior knowledge of the reconstruction image. Therefore, the spatial 

domain methods have been more widely used, due to their flexible image and noise modeling capabilities. 

As previously mentioned, the earliest idea for super-resolution reconstruction came from remote 

sensing image resolution enhancement. To date, the most successful application of super-resolution 

reconstruction in remote sensing is the SPOT-5 satellite system. This system shifts half a sampling 

interval in the horizontal and vertical directions by a double CCD linear array, which obtains  

two panchromatic 5 m resolution images, and then produces an approximately 2.5 m resolution  

high-resolution image through super-resolution reconstruction processing [13]. This is a successful 

example of the application of super-resolution reconstruction in remote sensing via the combination of 

the hardware approach and the post-processing software approach. In recent years, the super-resolution 

reconstruction of remote sensing images has mainly focused on multi-temporal image sequences. 

Merino et al. [14] proposed a variable-pixel linear reconstruction based super-resolution reconstruction 

algorithm and conducted experiments with Landsat ETM+ images. Shen et al. [15] proposed a  

super-resolution reconstruction algorithm for use with Moderate Resolution Imaging Spectroradiometer 

(MODIS) images. Li et al. [16] proposed a method based on a universal hidden Markov tree model for 

remote sensing images and tested it with Landsat7 panchromatic images captured on different dates. 

The imaging interval of multi-temporal satellite images over the same scene may, however, be several 
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days or even much longer. Between the adjacent imaging moments, the imaging scene or weather 

conditions may change, which poses great difficulties for the super-resolution reconstruction of  

multi-temporal remote sensing images. 

The multi-angle remote sensing imaging system obtains images at different angles within a  

very short time span, such that the imaging scene and weather conditions hardly change at all. The  

multi-angle images of the same scene contain sub-pixel displacements, so they are more suitable for 

super-resolution reconstruction than a multi-temporal image sequence. Therefore, scholars have 

recently begun to utilize multi-angle remote sensing images for super-resolution reconstruction.  

Chan et al. [17] proposed registering multi-angle CHRIS/Proba images with a thin-plate spline  

non-rigid transform model and conducted super-resolution reconstruction experiments with Delaunay 

triangulation based non-uniform interpolation. Ma et al. [18] proposed an operational SR approach for 

multi-angle WorldView-2 remote sensing images, which consists of two stages: image registration and 

super-resolution reconstruction. Image registration accounts for the local geometric distortion and 

photometric disparity. The SRR model is composed of an L1 norm data fidelity item and total 

variation (TV) regularization. Galbraith et al. [19] noted that the spatial resolution of different angle 

images is different, and the spatial resolution of an off-nadir image will be lower than that of the nadir 

image. Hence, the contributions of different angle images to the reconstructed image will be different. 

In view of this, we propose an adaptive weighted super-resolution reconstruction algorithm 

considering the different resolutions of multi-angle remote sensing images. The different contributions 

of the multi-angle LR images, which arise from their different resolutions, are reflected by different 

weights. Two different weighting schemes are utilized in this paper. The first scheme uses the relative 

angle between the imaging angle of the current image and that of the nadir image. The second is 

closely related to the residual error of each low-resolution angle image. The proposed model consists 
of a data fidelity item based on an  norm and the TV model as the regularization item. The 

extensive experimental results confirm the feasibility and superiority of our proposed method. 

The structure of the paper is as follows. In Section II, we introduce the general super-resolution 

model and describe the proposed adaptive weighted SRR approach in detail. We then give the 

experiments and the experimental analysis in Section III. Finally, we conclude the paper and discuss 

the directions of our future work in Section IV. 

2. The Adaptive Weighted Super-Resolution Reconstruction Method for Multi-Angle Images 

2.1. Observation Model  

An image super-resolution observation model is used to simulate the imaging degradation process of 

the remote sensing sensor imaging system. The input is a continuous natural scene, in which the scene 

signals are contaminated by the atmospheric noise before reaching the image system, and then sampled 

according to the Nyquist sampling theorem, to obtain the HR images. Through the sensor capturing 

process, multi-frame low-resolution remote sensing images are generated over the same scene into the 

camera sensor area [20]. In the imaging process, the obtained low-resolution images suffer from various 

degradation issues, including motion effects, blurring, noise, and downsampling. The motion effects 

usually include rotation and shift. The blurring effects comprise optical blurring and motion blurring. 

2
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Let x be the high-resolution image to be constructed, and yk denotes the k-th low-resolution angle 

image. Dk is the k-th downsampling operator. Bk represents the blurring effects. Mk expresses the 

motion displacement information between the reference image and the k-th angle image. nk represents 

the noise. We can then obtain the observation model: 

  (1) 

where the size of the LR image is m, n in the horizontal and vertical directions, and the resolution 

enhancement factor between the HR image and LR image is set as r. Z is the total number of  

multi-angle images. yk  and nk are both of the size mn × 1. Matrices Bk and Mk have the same size of 

r2mn × r2mn. The size of Dk is mn × r2mn.  represents the original HR image with the size of r2mn × 1. 

It is assumed that the downsampling matrix Dk and the blurring matrix Bk are both the same for all the 

LR images, and are denoted as D and B, respectively. The graphical simulation imaging process for 

acquiring the digital images is shown in Figure 1. In the practical experiments, the three matrices D, B 
and Mk are constructed with the resolution enhancement factor, blurring kernel function and image 

motion shift, respectively. 

Figure 1. Simulation imaging process for acquiring the digital images, where the desired 

HR image is at the left side with the observed image at the extreme right. 

 

2.2. The Adaptive Weighted Super-Resolution Reconstruction Method 

The super-resolution reconstruction is an inverse process of the imaging process, and is usually 

considered as an ill-posed inverse problem. In order to obtain a more desirable result, a regularization 

method is utilized to stabilize the ill-posed inverse problem. Traditionally, regularization can be 

described from both the algebraic and statistical perspectives [4]. Using regularization techniques, the 

desired HR image can be obtained by solving the following cost function: 

 (2) 

where ρ(yk−DBMkx) and U(x) are referred to as the data fidelity item and the regularization item, 

respectively. λ is the regularization parameter that controls the relative contribution between them. 

The data fidelity item ρ(yk−DBMkx) provides a measure of the conformance of the estimated image 

to the observed image, according to the image observation model [2]. It is determined by the type of 

the noise vector nk in Equation (1). Assuming that the noise is additive white Gaussian noise (AWGN), 

the data fidelity item can be given by: 
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 (3) 

The regularization item U(x) imposes the spatial constraints on the image. The TV regularization 

model [22–23] is utilized here to regularize the ill-posed problem, and can be expressed as: 

 (4) 

where ▽xi = x[i+1, j] − x[i, j] and ▽xj = x[i, j+1] − x[i, j]. i and j represent the image position in the 

horizontal and vertical directions, respectively, and μ is a small positive parameter which ensures 

differentiability of the model. It is set to 0.01 in this paper. Substituting Equations (3) and (4) into 

Equation (2), we can get the following minimization cost function: 

 (5) 

In the multi-angle remote sensing image SRR case, the spatial resolution of the different angle 

images is different. Consequently, the amount of information that the desired reconstruction image 

obtains from each different angle image is also different. Therefore, there is a requirement for us to 

discriminate their different contributions and treat them unequally in the super-resolution process.  

In this paper, we propose utilizing a weighted super-resolution reconstruction energy function model, 

as shown in Equation (6): 

 (6) 

where Wk is the weight value for the k-th angle image. The two adaptive weighting schemes are 

introduced in the next subsection. 

As the TV model shown in Equation (4) is nonlinear with respect to x, the lagged diffusivity  

fixed-point iteration [24] is utilized here. We then use the steepest descent method to solve the 

weighted super-resolution reconstruction model: 

 (7) 

where α is a scalar defining the step size in the reverse direction of the gradient.  is the reconstruction 

result for the n-th iteration, and the initial value takes the bilinear interpolation of the reference LR 

image. ΓTV(x) is the partial derivative of the TV regularization model ϒ TV(x) with respect to x. 

2.3. Adaptive Weighting Methods 

This subsection introduces the two adaptive weighting schemes. The first method assigns the 

weight for each angle image by the angle difference between its imaging angle and that of the nadir 

image. The other method builds a connection between the weight for each angle image and its 

corresponding residual, according to the image observation model. Generally speaking, the image 

which is the closest to the nadir image is selected as the reference image and should be assigned the 

largest weight value. 
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2.3.1. The Angular Difference Weighting Method 

An illustration of a multi-angle imaging system is shown in Figure 2 [19]. 

Figure 2. Illustration of a multi-angle imaging system. 

 

In Figure 2, β represents the instantaneous field of view angle. θk is the relative angle between the 

nadir image and the k-th angle image. h is the height from the sensor to the ground. Rnad represents the 

spatial resolution of the nadir image, and Rk denotes that of the k-th angle image. Through a series of 

deductions [19], the relationship between the spatial resolution of the two images can be expressed as: 

 (8) 

It is observed that the spatial resolution of the nadir image is the highest, and the larger the imaging 

angle of the k-th angle image, the smaller its spatial resolution is. It is natural that the nadir image 

should be assigned the largest weighted value, and the weighted values of the other angle images 

should be decreased with the increase of the relative angle between the nadir image and the k-th angle 

image. Therefore, following the relationship between the spatial resolutions of the two images, we 

build the following weighting function: 

 (9) 

where Wk represents the weight for the k-th angle image, and θk is the relative angle between the  

k-th angle image and the nadir image. 

2.3.2. Residual Weighting Method 

The other weighting approach is closely related to the residual errors. As already mentioned,  

the image which is the closest to the nadir image is selected as the reference image, which has the 

highest spatial resolution among all the multi-angle images, so the residual error of an image with a 
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low resolution will obviously be large. Therefore, the weights can be set as inversely proportional to 

the residual error of each different angle image. Here, to alleviate the resolution difference problem, 

we utilize the weighting method which was originally proposed by Hu et al. [25] to handle the 

different levels of registration errors of LR images. The weight value for the k-th angle image can be 

expressed as: 

 (10) 

where || yk−DBMkx ||
2
 is the residual term for the k-th angle image, and C is defined as: 

 
(11) 

3. Experimental Section 

3.1. Experimental Data and Setup 

In this paper, for the experiment data, we use the WorldView-2 data which were provided by 

DigitalGlobe for the purpose of the 2011 IEEE GRSS Data Fusion Contest. This dataset was acquired 

over the Santos Dumont Airport of Rio de Janeiro city, Brazil, in 19 January 2010, within a  

three-minute time frame. The WorldView-2 satellite provides five angular images, each of which 

contains an eight-band multispectral image with a spatial resolution of 1.8 m and one panchromatic 

image with a 0.5 m spatial resolution [26]. The eight bands of the multispectral image refer to Coastal, 

Blue, Green, Yellow, Red, Red Edge, Near-IR1, and Near-IR2. The sensor acquires different angle 

images at 44.7°, 56.0°, and 81.4° in the forward direction, and 59.8° and 44.6° in the backward 

direction. The five angles of the panchromatic image and Band 1 of the multispectral image are shown 

in Figures 3 and 4, respectively. The flat image regions are selected in the experiments, as image 

registration of the parallax areas is complicated. 

Figure 3. Panchromatic image of the multi-angle WorldView-2 imagery. From (a) to (e): 

81.4° in the forward direction, 59.8° and 44.6° in the backward direction, and 44.7° and 

56.0° in the forward direction. 
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Figure 4. Band 1 of the multi-angle WorldView-2 multispectral imagery. From (a) to (e): 

81.4° in the forward direction, 59.8° and 44.6° in the backward direction, and 44.7° and 

56.0° in the forward direction. 

     

(a) (b) (c) (d) (e) 

Figure 5. Two experimental regions cropped from Figure 3. (a) Image1; (b) Image2. 

(a) (b) 

For the SRR experimental setting, the experimental section consists of two parts: simulation images 

and real images. The simulation images are obtained by downsampling the already existing HR image. 

In the quality assessment of the reconstruction results, the original HR image is usually chosen as the 

target reference image, which provides more objective support and reliability for the quantitative 

evaluations. The real images are cut from the large experimental images, with respect to the same 

imaging site. The corresponding experimental results are evaluated with user-designed quantitative 

measures. The motivation behind this is that with the two types of image data source we can fully 

validate the effectiveness of the proposed method. The two different types of quantitative measures are 

introduced in the next subsection. 

For the SRR simulation image data experiments, the resolution enhancement factor is set to 2 for 

the horizontal and vertical directions, respectively. Two experimental regions of the 81.4° angle image 

are cut from the panchromatic image shown in Figure 3 and are shown in Figure 5, with each image of 

a size of 200 × 200, and the image values ranging from 0 to 255. The steps of obtaining the simulated 

LR images from the HR images are as follows: (1) Crop the corresponding image areas to the 81.4° 

angle images, as shown in Figure 5, from the other four different angle panchromatic images; (2) The 

multi-angle image sequence is convolved with a Gaussian smooth filter point spread function (PSF) of 

size 5 × 5 with the variance equal to 1; (3) Downsample the images in both the horizontal and vertical 

directions by a factor of 2. In the simulation process, we utilize all five multi-angle HR images to 

simulate the corresponding multi-angle LR images, instead of the traditionally used single HR image. 
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By doing so, the geometric disparity between the five original multi-angle HR images is maintained, 

and thus more precisely simulates real multi-angle imaging conditions. Here, we choose the 81.4° 

angle image as the reference image. Therefore, in the quantitative evaluations, the 81.4° angle HR 

image is chosen as the target image. 

The real experimental region is cut from Band 1 of the multispectral image shown in Figure 4, with 

a size of 190 × 190 pixels. The resolution enhancement factor is set to 2 for the horizontal and vertical 

directions, respectively. In the real image data experiment, the estimation of PSF is an important 

process in multiple-image SRR. Generally speaking, there are two ways to derive PSF in the context of 

SRR. One way is to assume the PSF is unknown and then conduct blind SRR [31], and the other 

approach is to assume the PSF to be known prior to the SRR process [15,20]. In fact, the latter 

approach is more commonly used because of the high ill-posedness of the blind SRR model. With this 

in mind, we use a Gaussian smooth filter of size 5 × 5 with variance equal to 1, which is commonly 

used in image SRR, for all the different angle images in the real multi-angle image SRR. 

In the data preprocessing, we use histogram matching to conduct relative radiometric correction 

between the different angle images. The frequency domain motion estimation method [21] is utilized 

to perform the image registration, and the related registration accuracy analysis for the simulation 

images is given. The regularization parameter selection method in this paper is that several different 

regularization parameters are employed, and the parameter values corresponding to the best result are 

chosen. The bilinear interpolation result and the SRR result via the optimization of the general SRR 

model, which is shown in Equation (5) and similar to the optimization model [18], are used as 

benchmark methods. 

3.2. Quantitative Evaluation Factors 

In order to evaluate the quality of the reconstruction image, we use the following five quantitative 

evaluation factors in the simulation image data experiments and the real image data experiments: ISNR 

(improvement in signal-to-noise ratio), PSNR (peak signal-to-noise ratio), and SSIM (structural 

similarity index), which require the original HR reference image, are the image quality indicators for 

the simulation image data reconstruction images; and CPBD (cumulative probability of blur detection) 

and Metric-Q, which do not need the original HR reference image, are used for the real image data 

experiment quality evaluation. 

(1) Improvement in Signal-to-Noise Ratio (ISNR) 

ISNR is widely used in image restoration tasks [19,27]. Let x be the original HR image,  

represents the SR results, and x0 denotes the bilinear interpolated image, then the ISNR value can be 

expressed as: 

 (12) 

ISNR is used to evaluate the sharpness of the image. The higher the ISNR value is, the better the 

quality of the reconstruction image. 
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(2) Peak Signal-to-Noise Ratio (PSNR) 

PSNR is very commonly used in the quantitative evaluation of SRR results and is based on the 

mean square error between the HR image and the SR image, with relation to the logarithmic of (2t-1)2 

(the maximum square of the signal), where t is the number of bits for each pixel value. We generally 

use eight bits for representing each pixel, so the formula can be expressed as follows: 

 
(13) 

PSNR can be used to characterize the image distortion. A better SRR image will get a higher  

PSNR value. 

(3) Structural SIMilarity Index (SSIM) 

SSIM, as proposed by Wang et al. [28], has been widely used for the evaluation of the quality of 

reconstruction images. The SSIM value is similar to the evaluation of the visual interpretation and is 

defined as: 

 (14) 

where  and  are the mean values of the HR image and the SRR image, respectively.  and  

represent the variance of the HR image and the SRR results, respectively.  is the covariance 

between the HR image and the SRR image. C1 and C2 are constant values to prevent the equation 

from being meaningless (numerator and denominator not equal to zero). In the simulation experiments, 

we set the constants C1 and C2 to 0.01 and 0.03, respectively, and the dynamic range of the image is 

from 0–255. SSIM is an evaluation factor used to characterize the contrast, brightness, and structural 

similarity of an image. It ranges from 0–1, and the closer the value is to 1, the better the image quality is. 

(4) Cumulative Probability of Blur Detection (CPBD) 

The CPBD measure, as proposed by Narvekar et al. [29], is a classification-based metric and is 

mainly used to evaluate image sharpness. In the algorithm, each class is calculated, with five grades of 

“Bad”, “Poor”, “Fair”, “Good”, and “Excellent”. The main principle is expressed as follows: 

 (15) 

 (16) 

Where PBLUR represents the probability of blur detection. wJNB(ei) is the just noticeable blur (JNB). w(ei) 

denotes the measured width of the edge ei. P(PBLUR) represents the PDF value when PBLUR is known. 

The CPBD value ranges between 0 and 1. The CPBD measure is mainly used to assess the clarity of an 

image, and its value is between 0 and 1. The higher the CPBD value is, the better the image quality is. 
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(5) Metric-Q 

Metric-Q is mainly used in image evaluation without a reference image [30]. It is based on the 

singular value decomposition of the local image gradient matrix, with the evaluation of contrast and 

sharpness. It still works well on images with random noise and blur. It can be expressed as: 

 (17) 

where s1 and s2 are the singular values of an image patch of the SRR result, which represents the 

energy in the directions of the dominant and vertical orientations of the local gradient field. We 

evaluate the image quality by comparing the value of Metric-Q. A higher Metric-Q index value 

indicates an image with sharper edges, and represents more contrast and sharpness in the image. 

3.3. Simulation Image Data Experiments 

3.3.1. Registration Accuracy 

Image registration is a key step in the SRR process, and it directly affects the quality of the  

final reconstruction images. The 81.4° angle image is selected as the reference image, and the other 

four different angle images are registered with respect to the reference image. In order to evaluate  

the registration accuracy, the global spatial domain image registration work by Shen et al. in [15] is 

adopted as the benchmark. The reason behind this is twofold. First, the frequency domain image 

registration method and the spatial domain method in [15] both account for the global motion between 

images, and thus provide the comparability between the two methods. Second, the spatial domain 

method [15] and its variants have been widely utilized and have been proven to be effective in many 

natural and remote sensing image super-resolution reconstruction tasks [1,2,15,32]. We choose two 

image regions of size 100 × 100 pixels, which are downsampled from the two images of size  

200 × 200 pixels, as shown in Figure 5, by a factor of 2, to independently test the frequency domain 

motion estimation method. The comparative results of the two image registration methods by standard 

deviation (STD) of the local displacements [18] are shown in Table 1. 

Table 1. Registration evaluation for the experimental images in terms of standard deviation 

in the simulation image data experiment. 

59.8° 44.6° 44.7° 56.0° Average 

Image1 
S 4.1959  5.1746  6.7593  4.2888  5.1047 
F 3.7878 4.5955 6.3109 4.3925 4.7717 

Image2 
S 5.9631  7.8938  7.1052  4.4458  6.3520 
F 4.8602 7.0562 5.3140 3.7444 5.2437 

In Table 1, the best registration evaluation results for the two image sequences are marked in bold. 

F represents the frequency domain image registration method [21], and S is the global spatial domain 

registration [15]. From the table, it is observed that the registration results of the frequency registration 

method are better than those of the global spatial domain registration method, which suggests that the 

frequency registration method is more appropriate for the SRR here. As the main focus of this paper is 

1 2
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to validate the effectiveness of the proposed adaptive weighted super-resolution reconstruction method 

for a multi-angle image sequence, small and flat image regions are chosen in the reconstruction part. In 

the case of large-size multi-angle remote sensing images, the proposed weighted super-resolution 

reconstruction method can be utilized jointly with the image registration approach proposed by  

Ma et al. [18], for practical operational purposes. 

3.3.2. The Evaluation of the Reconstruction Results 

We now evaluate the multi-angle super-resolution reconstruction results of the two image 

sequences, which are given in Figures 6 and 7, respectively. The (a) and (b) images in Figures 6 and 7 

show the original HR image and the bilinear interpolation results, respectively, and (c), (d), and (e) in 

Figures 6 and 7 show the results of the general SRR method (GEN), angular difference weighted SRR 

method (ANGW), and residual error weighted SRR method (RESW), respectively. From Figures 6 and 7, 

it is observed that the SRR results, both with weighting and without weighting, obtain more detailed 

information and better visual quality than the bilinear interpolation result. By considering the 

resolution differences between the different angle images, our proposed adaptive weighted SRR 

algorithm’s results are more similar to the original HR image than the non-weighted SRR algorithm, 

from the visual evaluation. 

Three quantitative measures, ISNR, PSNR, and SSIM, are used to evaluate the quality of the 

reconstruction images, and the quantitative evaluation results are shown in Tables 2–4, respectively. 

The best evaluation result for each image is marked in bold, and the second-best result is underlined. 

Figure 6. Experimental results of different resolution enhancement methods with Image1. 

(a) Original HR image; (b) bilinear interpolation; (c) general algorithm (GEN); (d) angle 

weighted (ANGW); (e) residual error weighted (RESW). 

 
(a) (b) 

  
(c) (d) (e) 
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Figure 7. Experimental results of different resolution enhancement methods with Image2. 

(a) Original HR image; (b) bilinear interpolation; (c) general algorithm (GEN); (d) angle 

weighted (ANGW); (e) residual error weighted (RESW). 

 
(a) (b)

  
(c) (d) (e) 

Table 2 shows the ISNR results of the four resolution enhancement methods with the four images. 
Better reconstruction results are reflected by higher ISNR values. It is observed that the RESW SRR 

method achieves the best result on Image1 and Image2, and obtains an improvement averaging 

0.55 dB. In general, the proposed adaptive weighted SRR methods obtain better ISNR quantitative 

evaluation results than the general SRR method. 

The PSNR and SSIM results of the four images are shown in Table 3 and Table 4, respectively. 

Better reconstruction results are reflected by higher PSNR and SSIM values. It is observed that the 

RESW SRR method obtains the best results on Image1 and Image2. It is concluded that, by 

considering the resolution differences between the different angle images, the proposed adaptive 

weighted method outperforms the traditional non-weighted SRR method in terms of both visual 

evaluation and quantitative measures. 

Table 2. ISNR comparisons of the reconstruction results in the simulation image 

data experiment. 

 Bilinear GEN ANGW RESW 

Image1 0.0000  6.9709 7.3191 7.5331 
Image2 0.0000  7.8626 8.2089 8.3915 

Table 3. PSNR comparisons of the reconstruction results in the simulation image 

data experiment. 

 Bilinear GEN ANGW RESW 

Image1 28.3764 35.4517 35.7889 35.9797 
Image2 26.8861 34.6467 34.9311 35.0416 
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Table 4. SSIM comparisons of the reconstruction results in the simulation image 

data experiment. 

 Bilinear GEN ANGW RESW 

Image1 0.9357 0.9682 0.9702 0.9711 
Image2 0.9340 0.9672 0.9692 0.9704 

3.3.3. Parameter  Sensitivity Analysis 

To access the sensitivity to the regularization parameter in the SRR process, the relationships 

between the ISNR, PSNR, and SSIM values and λ are shown in Figure 8. 

As shown in Figure 8, the horizontal axis represents the value of the regularization parameter λ, and 

the vertical axis shows the value of the quantitative evaluation factor. In all these six figures, it is 

shown that all three quantitative evaluation factors vary with the regularization parameter λ and share 

the same trend, which improves gradually until a certain point but drops after the top value and 

exhibits a parabolic-like curve. It is observed that the results of the three super-resolution 

reconstruction methods are quite robust to the variation in the value of the regularization parameter λ. 

In addition, the proposed two adaptive weighted SRR methods achieve better results than the general 

SRR method. 

Figure 8. Sensitivity analysis of the regularization parameter λ in terms of ISNR, PSNR 

and SSIM in the simulation image data experiment. (a,c,e) show the ISNR, PSNR, and 

SSIM values of Image1, respectively; (b,d,f) show the ISNR, PSNR, and SSIM values of 

Image2, respectively 

(a) (b) 

(c) (d)

λ
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Figure 8. Cont. 

(e) (f) 

3.3.4. Contribution Analysis of Multi-Angle Images 

To analyze the different contributions of the multi-angle images to the final SRR result, the weight 

values of each different angle image obtained by the two weighting schemes are shown in Tables 5  

and 6, respectively. The weights for the multi-angle images derived by the ANGW method are the 

same for all the LR image sequences, and the weight combination obtained by the RESW method 

differs from the experimental data. From the tables, it is observed that the images which are closer to 

the nadir image achieve larger weights, which validates the effectiveness of the two weighted SRR 

methods from another perspective. 

Table 5. Weight of each angle image for the ANGW method in the simulation image 

data experiment. 

Angle 81.4° 59.8° 44.6° 44.7° 56.0° 
Weight 1.0000 0.8645 0.6412 0.6428 0.8160 

Table 6. Weight of each angle image for the RESW method in the simulation image 

data experiment. 

Angle 81.4° 59.8° 44.6° 44.7° 56.0° 

Image1 1.4745  1.0040  0.7647  0.5485  1.2072  
Image2 1.3571  1.1177  0.5667  0.6070  1.3515  

3.4. Real Image Data Experiment 

The weight values of each different angle image obtained by the RESW method for the real  

image data experiment are illustrated in Table 7, and the weights of the ANGW method are set to the 

same as in Table 5. The observations from Table 7 are consistent with those of the simulation image 

data experiments. That is to say, the images which are closer to the nadir image achieve larger weights. 

Table 7. Weight of each angle image for the RESW method in the real image data experiment. 

Angle 81.4° 59.8° 44.6° 44.7° 56.0° 

Weight 2.0938  0.9510  0.4733  0.5210  0.9609  
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Figure 9a–d displays the SRR results of bilinear interpolation, the general SRR algorithm with  

no weighting, the ANGW SRR method, and the RESW SRR method, respectively. From Figure 9, it is 

observed that the three SRR results have a better visual quality than the bilinear interpolation result.  

To facilitate the visual comparison, four regions are cropped from the reconstruction result, as shown 

in Figure 10, and are illustrated in Figures 11 and 12, respectively. 

Figure 9. SRR results of the real multi-angle remote sensing images. (a) bilinear 

interpolation; (b) GEN; (c) ANGW; (d) RESW. 

 
(a) (b) 

 
(c) (d) 

Figure 10. Four regions cropped from the SR result shown in Figure 9. 
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Figure 11. Local amplification 1 of the real experiment result shown in Figure 9.  

(a) LR reference image; (b) bilinear interpolation; (c) GEN; (d) ANGW; (e) RESW;  

(f) panchromatic image. 

  
(a) (b) (c) 

  
(d) (e) (f) 

Figure 12. Local amplification 2 of the real experiment result shown in Figure 9.  

(a) LR reference image; (b) bilinear interpolation; (c) GEN; (d) ANGW; (e) RESW;  

(f) panchromatic image. 

 
(a) 

 
(b) (c) 

 
(d) 

 
(e) 

 
(f) 

Images (a–e) in Figures 11 and 12 show the results of bilinear interpolation, the general SRR 

algorithm, the ANGW SRR method, and the RESW SRR method, respectively. Image (f) in Figures 11 

and 12 shows the corresponding area taken from the panchromatic image as the ground truth reference. 
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There are many detailed parts in the experimental results which can reflect the superiority of the two 

proposed adaptive weighted SRR methods over the general SRR algorithm. For example, images (d) 

and (e) in Figure 11 have richer details inside the circular flat area than Figure 11c, and the points 

distributed around the circle are brighter. The aircraft outlined in images (d) and (e) of Figure 12 have 

more sharpness and better continuity than the other results. 

On the whole, it is observed that the results of the SRR methods, both with weighting and no 

weighting, have a much better visual quality than that of the bilinear interpolation. In addition, the 

results of the two adaptive SRR methods have slightly more sharpness, richer detailed information, and 

higher image contrast than that of the general SRR method, which confirms the feasibility and the 

effectiveness of the proposed adaptive weighted SRR methods. 

In order to obtain a precise quantitative evaluation of the real image experiment results, the CPBD 

values and the Metric-Q quality evaluation results are shown in Table 8. The best evaluation result  

for each image is marked in bold, and the second-best result is underlined. The quality of the 

reconstruction results is reflected by a higher CPBD value and Metric-Q value. Comparing the 

quantitative evaluation measurements in the first two columns of Table 8, it is observed that the 

reconstruction results of the general SRR method are much better than those of the bilinear 

interpolation method, which suggests that the complementary information from multi-angle images 

can be used to enhance the image spatial resolution. In the last three columns, it is observed that by 

considering the resolution differences of the multi-angle images, the two proposed adaptive weighted 

SRR methods further improve the reconstruction results. 

Table 8. CPBD and Metric-Q of the reconstruction image shown in Figure 9. 

 Bilinear GEN ANGW RESW 

CPBD 0.2775  0.6912  0.7079  0.7084  

Metric-Q 35.1768  50.6106  50.7991  51.0615  

4. Conclusions 

Different imaging angles lead to spatial resolution differences between the images. To alleviate the 

negative effects of the resolution differences on the quality of the reconstruction image, we propose an 

adaptive weighted super-resolution reconstruction scheme for multi-angle remote sensing images. 

Specifically, two weighting strategies are introduced in this paper. The first method utilizes the angular 

difference between the imaging angles of the current LR image and the nadir image. The second 

weighting method determines the weight of one LR image as inversely proportional to its 
corresponding residual error. The proposed SRR model is composed of the  norm as the data fidelity 

item and the TV model as the regularization item, and is then solved with the steepest descent method. 

The results in both the simulation image data experiments and the real image data experiments confirm 

the feasibility and effectiveness of our proposed model, in terms of both the visual evaluation and 

quantitative measurements. 

There is, however, still room for further improvement. For example, we only chose the flat regions 

in the experiments. The registration of the parallax areas is still a challenge, so more robust motion 

estimation methods are needed. In the imaging process, different angle images are degraded by 

2
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different levels of blurring and noise, so the estimation of the PSF of each different angle image should 

also be taken into consideration. 
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